The role of C2 domains in Ca2+-activated and Ca2+-independent protein kinase Cs in aplysia.

نویسندگان

  • A M Pepio
  • X Fan
  • W S Sossin
چکیده

In the nervous system of the marine mollusk Aplysia there are two protein kinase C (PKC) isoforms, the Ca2+-activated PKC Apl I and the Ca2+-independent PKC Apl II. PKC Apl I, but not PKC Apl II is activated by a short-term application of the neurotransmitter serotonin. This may be explained by the fact that purified PKC Apl II requires a higher mole percentage of phosphatidylserine to stimulate enzyme activity than does PKC Apl I. In order to understand the molecular basis for this difference, we have compared the ability of lipids to interact with the purified kinases and with regulatory domain fusion proteins derived from the kinases using a variety of assays including kinase activity, phorbol dibutyrate binding, and liposome binding. We found that a C2 domain fusion protein derived from PKC Apl I binds to lipids constitutively, while a C2 domain fusion protein derived from PKC Apl II does not. In contrast, fusion proteins containing the C1 domains of PKC Apl I and PKC Apl II showed only small differences in lipid interactions. Thus, while the presence of a C2 domain assists lipid-mediated activation of PKC Apl I, it inhibits activation of PKC Apl II.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca2+ modulation of cis-unsaturated fatty acid-induced mutant protein kinase C activity: indication of inhibitory Ca2+-binding site in protein kinase C-alpha.

The C2 domain in protein kinase C (PKC) is homologous to equivalent domains in a number of important cytoplasmic proteins. Except for its implied function in Ca2+ and phospholipid binding, the precise role of this domain is not well understood. We examined the role of the C2 domain of PKC-alpha using a mutant enzyme in which 80% of this domain has been deleted. This mutant can be activated by p...

متن کامل

Isoform specificity of PKC translocation in living Aplysia sensory neurons and a role for Ca2+-dependent PKC APL I in the induction of intermediate-term facilitation.

Protein kinase Cs (PKCs) are important effectors of synaptic plasticity. In Aplysia, there are two major phorbol ester-activated PKCs, Ca2+-activated PKC Apl I and Ca2+-independent PKC Apl II. Functional Apl II, but not Apl I, in sensory neurons is required for a form of short-term facilitation induced at sensorimotor synapses by the facilitatory transmitter serotonin (5-HT). Because PKCs are a...

متن کامل

C2-domain mediated nano-cluster formation increases calcium signaling efficiency

Conventional protein kinase Cs (cPKCs) are key signaling proteins for transducing intracellular Ca2+ signals into downstream phosphorylation events. However, the lifetime of individual membrane-bound activated cPKCs is an order of magnitude shorter than the average time needed for target-protein phosphorylation. Here, we employed intermolecular Förster resonance energy transfer (FRET) in living...

متن کامل

Effect of chronic morphine administration on Ca2+/Calmodulin-Dependent protein kinase IIα activity in rat locus coeruleus and its possible role in morphine dependency

Introduction: The aim of this study was to assess the effect of Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) inhibitor (KN-93) injection into the locus coeruleus (LC) on the modulation of withdrawal signs. We also sought to study the effect of chronic morphine administration on CaMKIIα activity in the rat LC. Methods: The research was based on behavioral and molecular studies. In the behav...

متن کامل

Phosphorylation-dependent subcellular translocation of a Ca2+/calmodulin-dependent protein kinase produces an autonomous enzyme in Aplysia neurons

We have shown previously that the subcellular distribution of a major calmodulin-binding protein is altered under conditions causing increased synthesis of cAMP in Aplysia neurons (Saitoh, T., and J. H. Schwartz, 1983, Proc. Natl. Acad. Sci. USA, 80:6708-6712). We now provide evidence that this Mr 55,000 protein is a subunit of a Ca2+/calmodulin-dependent kinase: (a) both the Mr 55,000 calmodul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 30  شماره 

صفحات  -

تاریخ انتشار 1998